MOCK UPCAT 1: ANSWER KEY WITH SOLUTIONS

1. D
$0.04=\frac{4}{100}=\frac{1}{25}=\frac{\mathbf{1 0}}{\mathbf{2 5 0}}$
2. \mathbf{A}
$\frac{2 a}{2 b}=\frac{z a}{z b}=\frac{\boldsymbol{a}}{\boldsymbol{b}}$
3. \mathbf{C}
$(2 a)^{2}=\left(2^{2}\right)\left(a^{2}\right)=4 a^{2}$
$\mathrm{x}^{5}-\mathrm{x}^{3}=\left(\mathrm{x}^{3}\right)\left(\mathrm{x}^{2}-1\right)$
$\mathbf{a}^{\mathbf{3}}+\mathrm{a}^{\mathbf{3}}=\left(\mathrm{a}^{\mathbf{3}}\right)(\mathbf{1}+\mathbf{1})=\mathbf{2 a ^ { \mathbf { 3 } }}$
$(x+y)^{2}=x^{2}+2 x y+y^{2}$
4. \mathbf{C}
$\frac{1}{a}+\frac{1}{b}=\frac{b}{a b}+\frac{a}{b a}=\frac{b+a}{a b}$
$\sqrt{3}-\sqrt{2}=1.732-1.414=0.318$
$(x-y)^{2}=x^{2}-2 x y+y^{2}$
5. B
$\frac{\left(2^{13}\right)\left(3^{14}\right)}{(27)\left(6^{12}\right)}=\frac{\left(2^{13}\right)\left(3^{14}\right)}{\left(3^{3}\right)\left(3^{12}\right)\left(2^{12}\right)}=\frac{\left(2^{13}\right)\left(3^{14}\right)}{\left(3^{15}\right)\left(2^{12}\right)}=\frac{\left(2^{13}\right)\left(3^{14}\right)}{\left(3^{15}\right)\left(2^{12}\right)}=$
$\frac{(2)\left(2^{12}\right)\left(3^{14}\right)}{\left(3^{15}\right)\left(2^{12}\right)}=\frac{(2)\left(3^{14}\right)}{3^{15}}=\frac{(2)\left(3^{14}\right)}{(3)\left(3^{14}\right)}=\frac{2}{3}$
6. C
$\mathrm{s}=\frac{r s t+x y}{t y-r}$
sty $-\mathrm{sr}=\mathrm{rst}+\mathrm{xy}$
sty $-\mathrm{xy}=\mathrm{rst}+\mathrm{sr}$
$(\mathrm{y})(\mathrm{st}-\mathrm{x})=(\mathrm{rs})(\mathrm{t}+1)$
$\mathrm{r}=\frac{\mathrm{y}(\mathrm{st}-\mathrm{x})}{\boldsymbol{s}(\mathrm{t}+\mathbf{1})}$
7. \mathbf{B}
$[(\sqrt[3]{x})(\sqrt[5]{x})]^{10}=\left[\left(x^{1 / 3}\right)\left(x^{1 / 5}\right)\right]^{10}$
$=\left(x^{10 / 3}\right)\left(x^{10 / 5}\right)=\left(x^{10 / 3}\right)\left(x^{2}\right)$
$=x^{\frac{10}{3}+2}=x^{\frac{10}{3}+\frac{6}{3}}=x^{16 / 3}=\sqrt[3]{\boldsymbol{x}^{16}}$
8. \mathbf{C}
$\left(-8 a^{5} b^{2} c^{3}\right)\left(-2 a^{2} b^{7} c\right)^{2}$
$=\left(-8 a^{5} b^{2} c^{3}\right)\left[(-2)^{2}\left(a^{2}\right)^{2}\left(b^{7}\right)^{2}\left(c^{2}\right)^{2}\right]$
$=\left(-8 a^{5} b^{2} c^{3}\right)\left(4 a^{4} b^{14} c^{2}\right)$
$=-32 a^{5+4} b^{2+14} c^{3+2}=-32 \mathbf{a}^{9} \mathbf{b}^{16} \mathbf{c}^{5}$
9. \mathbf{C}
$\mathrm{m}=\frac{4 t}{3 t-2 h}$
$3 \mathrm{mt}-2 \mathrm{hm}=4 \mathrm{t}$
$3 \mathrm{mt}-4 \mathrm{t}=2 \mathrm{hm}$
$(3 \mathrm{~m}-4)(\mathrm{t})=2 \mathrm{hm}$

$$
\mathrm{t}=\frac{2 h m}{3 m-4}
$$

10. C

$\mathrm{x}=56+24=\mathbf{8 0}$
11. C

Sum of terms in a sequence $=($ Average $)(\#$ of terms $)$

Average $=\frac{1 \text { st term }+ \text { last term }}{2}$

$$
=\frac{21+72}{2}=46.5
$$

Number of terms

$$
=\frac{\text { last term-1st term }}{\text { common difference }}+1
$$

$$
=\frac{72-21}{3}+1=\frac{51}{3}+1=18
$$

$$
\text { Sum }=(46.5)(18)=\mathbf{8 3 7}
$$

12. C

In an arithmetic sequence, the $8^{\text {th }}$ term $=\left[1^{\text {st }}\right.$ term $+(7)$ (common difference) $]$ and the $15^{\text {th }}$ term $=\left[1^{\text {st }}\right.$ term $+(14)($ common difference $\left.)\right]$.
Let A_{1} be the $1^{\text {st }}$ term
d be the common difference

$$
\begin{aligned}
& A_{1}+14 d=30 \\
& -\quad A_{1}+7 d=9 \\
& 7 d=21 \\
& d=3 \\
& A_{1}+14 d=30 \\
& A_{1}=30-14 d \\
& A_{1}=30-(14)(3)=30-42=-\mathbf{1 2}
\end{aligned}
$$

13. C

$$
\frac{3}{125}=0.024
$$

14. C

$$
0.028-0.024=0.004=\frac{4}{1000}=\frac{\mathbf{1}}{\mathbf{2 5 0}}
$$

Let x be the price of spaghetti;
y be the price of juice

$$
\begin{aligned}
& x+y=230 \\
& x=y+100 \\
& y+100+y=2 y+100=230 \\
& 2 y=130 \\
& y=65
\end{aligned}
$$

15. C
rate: 50 envelopes/minute
time: $\frac{\text { number of envelopes }}{\text { rate }}$
n/50
16. C

Let x be the price of refrigerator

$$
\begin{aligned}
& (5 \%)(\mathrm{x})=(0.05)(\mathrm{x})=\mathrm{P} 500.00 \\
& \mathrm{x}=\frac{P 500}{0.05}=\mathbf{P 1 0} 000
\end{aligned}
$$

17. B
rate: 7 tables/day
time: $\frac{\text { number of tables }}{\text { rate }}$

t/7

18. A

LCM (9, 21): 63
The bells will ring simultaneously 63 minutes after 12 noon or at 1:03 p.m.
19. B

Let x be the mother's age;
$(3 x-7)$ be the son's age
If $x=15$, then $3 x-7=45-7=38$
She gave birth 15 years ago and her age was then $38-15=\mathbf{2 3}$ years old.
20. D

Let x be Trina's age;
$37-x$ be Trisha's age;
$x-5$ be Trina's age 5 years ago;
32 - x be Trisha's age 5 years ago;
$\mathrm{x}-5=(2)(32-\mathrm{x})$
$\mathrm{x}-5=64-2 \mathrm{x}$
$3 \mathrm{x}=64+5=69$
$\mathrm{x}=23$
21. B

Let x be the \# of tables w/ 4 chairs
20 - x be the \# of tables w/ 6 chairs
$(4)(x)+(6)(20-x)=92$
$4 \mathrm{x}+120-6 \mathrm{x}=92$
$-2 x=-28$
$x=14$
22. C

Total cost of taxed goods
$=$ P540 $+($ P540 $)(12 \%)$
$=$ P540 $+($ P540 $)(0.12)$
$=(\mathrm{P} 540)$ (1.12)
$=$ P604.80
Total cost of all goods
$=$ taxed goods + untaxed goods
$=$ P604.80 + P66
$=\mathbf{P 6 7 0 . 8 0}$
23. A

Let x be mother's age
2 x be Grandmother's age
$2 x-60$ be Tanisha's age
$x+2 x+2 x-60=150 ;$
$5 \mathrm{x}-60=150$;
$5 \mathrm{x}=210$;
$\mathrm{x}=42$;
$2 x-60=(2)(42)-60=84-60=24$
24. D

If growth of sales of Pet Habitat this year is 20%, it's sales next year is 1.2 times as this year. So, the sales of an indicated year are 1.2 times as that of its previous year.
Ratio: $1.2: 1=\mathbf{6 : 5}$
25. C

Ave. speed $=\frac{\text { totaldistance }}{\text { totaltime }}=\frac{120 \cdot 2 \mathrm{~km}}{2+3 \mathrm{hrs}}$
$=\frac{240 \mathrm{~km}}{5 \mathrm{hrs}}=48 \mathrm{~km} / \mathrm{hr}=48 \mathbf{k p h}$
26. A

2:25 pm = 14:25 (military time)
10:00 to $14: 25=4 \mathrm{hrs}$ and 25 mins
8:00-7:00 = 1 hour time difference
4 hrs. \& 25 min. $-1 \mathrm{hr}=\mathbf{3}$ hrs. \& $\mathbf{2 5}$ mins.
27. D

Time $=\frac{\text { distance }}{\text { speed }}=\frac{5 \mathrm{~km}}{25 \mathrm{~km} / \mathrm{h}}=0.2 \mathrm{hr}$
$(0.2 \mathrm{hr})\left(\frac{60 \text { minutes }}{\text { hour }}\right)=12 \mathrm{mins}$.
He will arrive 12 minutes past 9:00 or at
9:12 a.m.
28. D

At 6:15:
Train A:
$(6: 15-5: 00)(10 \mathrm{kph})=12.5 \mathrm{~km}$ from station
Train B:
$(6: 15-5: 30)(8 \mathrm{kph})=6 \mathrm{~km}$ from station
Distance: $12.5 \mathrm{~km}-6 \mathrm{~km}=6.5 \mathrm{~km}=\frac{\mathbf{1 3}}{\mathbf{2}} \mathbf{~ k m}$
29. A
$\mathrm{f}(\mathrm{x})=\frac{x+1}{x^{2}-1}=\frac{x+1}{(x-1)(x+1)}=\frac{1}{x-1}, \mathrm{x} \neq \pm 1$
$\mathrm{g}(\mathrm{x})=\frac{3 x+7}{2 x}$
$\mathrm{f}[\mathrm{g}(\mathrm{x})]=\frac{1}{\frac{3 x+7}{2 x}-1}=\frac{1}{\frac{3 x+7}{2 x}-\frac{2 x}{2 x}}=\frac{1}{\frac{3 x+7-2 x}{2 x}}$
$=\frac{1}{\frac{x+7}{2 x}}=\frac{2 x}{x+7}$
30. C
$28 x-4 y-12=0 ;$
$28 \mathrm{x}-12=4 \mathrm{y}$;
$7 \mathrm{x}-4=\mathrm{y}$;
$\mathrm{y}=7 \mathrm{x}-4$; (slope-intercept form)
slope $=7$
31. C
$x^{2}-y^{2}=(x+y)(x-y)=77$
$x+y=11$
$x-y=\frac{77}{11}=7$

$$
x+y=11
$$

$+\underline{x}-\mathrm{y}=7$

$$
2 x=18 ; x=9
$$

32. B

A midpoint of a line segment is equidistant from the 2 end points.
Distance $(-14,-6)=|-14-(-6)|=|-8|=8$ $-6+8=\mathbf{2}$
33. C

	Statement	Reason
1. $\overline{\mathrm{BD}}=\overline{\mathrm{CD}} ;$	$\begin{array}{l}\text { 1. Definition of } \\ \text { isosceles triangle }\end{array}$	
$\mathrm{AD}=\overline{\mathrm{BD}}$		

Property of

Equality\end{array}\right]\)

| $+\mathrm{m} \angle \mathrm{DBC}+$ |
| :---: | :---: |
| $\mathrm{m} \angle \mathrm{DBC}+\mathrm{m} \angle \mathrm{DCA}$ |
| $+\mathrm{m} \angle \mathrm{DCA}=$ |
| $2(\mathrm{~m} \angle \mathrm{DAB}+\mathrm{m} \angle \mathrm{DBC}$ |
| $+\mathrm{m} \angle \mathrm{DAC})=180^{\circ}$ |\quad of Equality

34. A
$12+6=18$; height of bigger triangle
12:20::18:20 + x
$20+\mathrm{x}=\frac{(20)(18)}{12}=30$
$\mathrm{x}=30-20=\mathbf{1 0}$
35. D

The first three statements (Opposite angles are congruent, opposite sides are equal in length, and
adjacent angles are always supplementary.) are among the properties of parallelograms.

Let ABCD be a parallelogram and BC be one of its diagonals.

$\left.$| Statement | | Reason |
| :--- | :--- | :--- |
| 1. | $\mathrm{AB}\\|\mathrm{CD} ; \mathrm{AC}\\| \mathrm{BD}$ | Defn. of parallelogram |
| 2. | $\angle \mathrm{ACB}=\angle \mathrm{DBC} ;$ | |
| $\angle \mathrm{ABC}=\angle \mathrm{DCB}$ | | | | Alternate interior |
| :--- |
| angles of parallel lines |
| are congruent. | \right\rvert\, | 3. | $\overline{\mathrm{BC}}=\overline{\mathrm{BC}}$ | Reflexive Property |
| :--- | :--- | :--- |
| 4. | $\triangle \mathrm{ACB} \cong \Delta \mathrm{DBC}$ | ASA Postulate |
| 5. | $\angle \mathrm{~A}=\angle \mathrm{D} ;$ | Corresponding parts of
 congruent triangles are
 congruent |

Statement 1 proved. You can also prove that $\angle \mathrm{B}=\angle \mathrm{D}$ by using the segment AD .

6. $\begin{aligned} \overline{\mathrm{AB}} & =\overline{\mathrm{CD}} ; \\ \overline{\mathrm{AC}} & =\overline{\mathrm{BD}}\end{aligned}$	Corresponding parts of congruent triangles are congruent
Statement 2 proved.	
$\text { 7. } \begin{aligned} & \mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{ACB}+\mathrm{m} \\ & \angle \mathrm{ABC}=180 \end{aligned}$	Definition of a triangle
8. $\mathrm{m} \angle \mathrm{ABC} \equiv \mathrm{m} \angle \mathrm{DCB}$	Definition of congruent angles
$\text { 9. } \begin{aligned} & \mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{ACB}+\mathrm{m} \\ & \angle \mathrm{DCB}=180 \end{aligned}$	Addition Property of Equality
$\begin{aligned} \text { 10. } \mathrm{m} & \angle \mathrm{ACB}+\mathrm{m} \angle \mathrm{DCB} \\ & =\mathrm{m} \angle \mathrm{C} \end{aligned}$	Angle Addition Postulate
11. $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{C}=180$	Addition Property of Equality
Statement 3 proved. You can also prove that $\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{D}=180$ if the diagonal used is AD.	

36. B

a. A rectangle is always a square.

Rectangle: a quadrilateral with opposite sides parallel and 4 right angles.
Square: a quadrilateral with opposite sides parallel, 4 right angles and 4 equal sides. *Not all rectangles have 4 equal sides. However, we can say that all squares are rectangles.
b. A square is always a rhombus. Rhombus: a quadrilateral with opposite sides parallel and 4 equal sides.
*Since a square has parallel opposite sides and 4 equal sides, then we can say that this statement is true.
c. A rhombus is always a rhomboid.

Rhomboid: a quadrilateral with opposite sides parallel and opposite sides and angles equal.
*The adjacent sides of rhomboids may or may not be equal.
d. A rhomboid is always a rectangle.
*Even though opposite angles of rhomboids are equal, it is possible that these angles are not 90°.
37. B

Area $=($ length $)($ width $)=(10)(6)=\mathbf{6 0}$ sq. units 38. A

The Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$ applies in any given right triangle. Thus, if the sides of the triangles are consecutive even integers, then we can substitute the lengths of the sides such that the resulting equation is

$$
\begin{aligned}
& a^{2}+(a+2)^{2}=(a+4)^{2} \\
& a^{2}+\left(a^{2}+4 a+4\right)=a^{2}+8 a+16 \\
& a^{2}+a^{2}+4 a+4=a^{2}+8 a+16 \\
& 2 a^{2}+4 a+4=a^{2}+8 a+16 \\
& a^{2}-4 a-12=0 \\
& (a-6)(a+2)=0 \\
& a=6,-2
\end{aligned}
$$

Since the length of a side of a triangle cannot be negative, thus the length of the shortest side is 6.
39. D

Let A, B and C be the any of sides of a triangle.
$\mathrm{A}+\mathrm{B}>\mathrm{C}$; wherein A, B and C are the lengths of the three sides of a triangle. (Note: Values for A, B and C are interchangeable.)
$10+9>8$;
$10+8>9$;
$9+8>10$
40. A

Statement	Reason
1. $\angle \mathrm{A}$ and $\angle \mathrm{Y}$ are vertical angles	1. Definition of Vertical Angles
2. $\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{Y}=$	2. Vertical Angle Theorem; Given
$\text { 3. } \begin{aligned} & \mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{~B}+ \\ & \mathrm{m} \angle \mathrm{X}=180 \end{aligned}$	3. Triangle Angle Sum Theorem
$\text { 4. } \begin{aligned} & 100^{\circ}+\mathrm{m} \angle \mathrm{~B}+ \\ & 55^{\circ}=180^{\circ} \end{aligned}$	4. Given
5. $\mathrm{m} \angle \mathrm{B}=25^{\circ}$	5. Subtraction Property of Equality
6. $\mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{Z}$	6. Alternate Interior Angle Theorem
7. $\mathrm{m} \angle \mathrm{Z}=\mathbf{2 5}$	7. Transitive Property of Equality

41. C

Width of smallest triangle: 2 x ;
Width of new triangle: 8 x ;
Height of smallest triangle: y;
Height of new triangle: $4 y$;
Area of smallest triangle: $\frac{(2 x)(y)}{2}=x y$;
Area of new triangle $: \frac{(8 x)(4 y)}{2}=16 x y$;
Area is increased $\mathbf{1 6}$ times
42. B

Area of triangle: $4 \mathrm{~cm}^{2}$;
Side of square: $\sqrt{8}=$ Radius of circle
Area of circle: $\pi \mathrm{r}^{2}=\pi(\sqrt{8})^{2}=\mathbf{8 \pi} \mathrm{cm}^{2}$
43. C

Note: \circ origin; \leftrightarrow displacement
Displacement $=\sqrt{3^{2}+1^{2}}=\sqrt{9+1}=\sqrt{10}$
44. C

Volume of cylinder: $\pi r^{2} h$;
Since π and height are constant, ratio of volume depends on r^{2}.
Ratio: $1^{2}: 2^{2}: 4^{2}=1: 4: 16$
45. B

Note: \square right angle $=90^{\circ}$

| Statement | Reason |
| :--- | :--- | :--- |
| 1. $75^{\circ}+60^{\circ}+\mathrm{m} \angle \mathrm{C}$ | |
| $=180^{\circ}$ | |\quad 1. \(\left.\begin{array}{l}Triangle Angle

Sum Theorem\end{array}\right]\)
46. C

Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{(21-5)^{2}+(-9-3)^{2}} \\
& =\sqrt{(16)^{2}+(-12)^{2}} \\
& =\sqrt{256+144} \\
& =\sqrt{400} \\
& =\mathbf{2 0}
\end{aligned}
$$

47. B

Since the triangle is equilateral, we can also say that the triangle is equiangular, with each angle $=60^{\circ}$.

If the perimeter of an equilateral triangle is 54 , then the length of a side is $\frac{54}{3}$ or 18 .

18

$\frac{18}{2}$ or 9
Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$
$x^{2}+9^{2}=18^{2}$
$x^{2}+81=324$
$x^{2}=324-81=243$
$\mathrm{x}=\sqrt{243}=\sqrt{3^{5}}=\mathbf{9} \sqrt{3}$
48. B

15:20::6:x

$$
\mathrm{x}=\frac{(20)(6)}{15}=\frac{120}{15}=\mathbf{8}
$$

49. C
$\mathrm{A} \cap \mathrm{B}=\mathrm{X}$
$(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{X}=\mathrm{X} \cap \mathrm{X}=\mathbf{X}$
50. C
$(A \cup B)=$ set of all numbers which are contained in either A or $B=\left\{\frac{1}{2}, \frac{1}{4}, \frac{3}{2}, \frac{3}{4}\right\}$
$(A \cup B) \cup C=$ set of all numbers which are
contained in either the union of A or B
$\left(\left\{\frac{1}{2}, \frac{1}{4}, \frac{3}{2}, \frac{3}{4}\right\}\right)$ or in $\mathrm{C}\left(\left\{\frac{1}{6}, \frac{1}{3}, \frac{1}{2}\right\}\right)=\left\{\frac{1}{2}, \frac{1}{4}, \frac{3}{2}, \frac{3}{4}, \frac{1}{6}, \frac{1}{3}\right\}$
$\mathrm{X}=\mathrm{A} \cap \mathrm{B}=$ set of all numbers which are
contained in both A and $\mathrm{B}=\left\{\frac{1}{2}, \frac{1}{4}\right\}$
51. B
52. A
53. B
54. D

$$
\begin{aligned}
& \text { Probability }=\frac{\text { numberof desiredoutcomes }}{\text { totalnumberofoutcomes }} \begin{array}{l}
5 \text { greenmarbles }
\end{array} \\
& \quad=\frac{5 \text { greenmarbles }+2 \text { bluemarbles }+3 \text { redmarbles }}{50}= \\
& \frac{5}{10}=\frac{1}{2}=50 \%
\end{aligned}
$$

55. B

If three pairs of pants could be partnered to five shirts, then the number of shirt-pants combinations from those are (3)(5) or 15 combinations.

If two pairs of pants could be partnered to four shirts, then the number of shirt-pants combinations from those are (2)(4) or 8 combinations.

Since all the shirt-pants combinations can be paired with any of the two blazers, then the number of possible 3-piece attires is $(15+8)(2)=$ $(23)(2)=46$.
56. A

Sum = (Average)(Number of terms);
Since arithmetic mean is synonymous to average, we can change the equation above to Sum $=($ Arithmetic Mean $)($ Number of terms $)$

$$
=(12)(10)
$$

$$
=120
$$

After one of the ten numbers is removed, the average of the remaining numbers goes up to 13 . Thus the sum of the remaining 9 numbers is
Sum $=(13)(9)$
$=117$
Thus, the number the difference between the sum of the ten numbers and the sum of the nine numbers is $120-117=\mathbf{3}$.
57. B

Let A be the set of players in the $1^{\text {st }}$ game
B be the set of players in the $2^{\text {nd }}$ game
Assuming that all the players will play at least one game, then $\mathrm{A} \cup \mathrm{B}=12$.
$\mathrm{A}+\mathrm{B}-\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cap \mathrm{B}$
$8+7-12=\mathrm{A} \cap \mathrm{B}=\mathbf{3}$
58. C

Let A be the set of students playing basketball
B be the set of students playing badminton
Assuming that the whole class plays either basketball or badminton or both, then $A \cup B$ is the set of all students $=30$.
$\mathrm{A}+\mathrm{B}-\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cap \mathrm{B}$
$20+23-30=\mathrm{A} \cap \mathrm{B}=\mathbf{1 3}$
59. D

If there are 98 seniors and 48 of these are girls, then there are $98-48$ or 50 boys. Consequently, the ratio of girls to boys among seniors is 48:50.
60. B

If 90% of 50 students scored 70 or higher, then $100 \%-90 \%$ or 10% did not reach the score of 70.10% of 50 students is equivalent to 5 students.

