MOCK UPCAT 10 (MATH UPDATE): ANSWER KEY WITH SOLUTIONS

1. D

$3 x+y=51^{\text {st }}$ equation
$2 x+y=42^{\text {nd }}$ equation
Using elimination method, subtract the
second equation from the first equation
then eliminate y

$$
\begin{gathered}
3 x+\not y=5 \\
-(2 x+\not x=4) \\
\hline x \quad=1
\end{gathered}
$$

Then substitute the value of x
$3 x+y=5$
$3(1)+y=5$
$3+y=5$
$y=5-3$
$y=2$

Substitute the value of x and y to get $x+y$
$x+y=1+2=3$
2. \mathbf{B}
$\frac{x}{x-y}+\frac{y}{y-x}$
Multiply $\frac{\mathrm{y}}{\mathrm{y}-\mathrm{x}}$ by -1
$\frac{x}{x-y}+-1\left[\frac{y}{y-x}\right]$
$\frac{x}{x-y}+-\frac{y}{-y+x}$
$\frac{x}{x-y}+-\frac{y}{-y+x}$
$\frac{x}{x-y}-\frac{y}{x-y}$
$\frac{x+y}{x-y}=1$
3. \mathbf{C}
$\mathrm{x}+\mathrm{y}=1 \quad 1^{\text {st }}$ equation
$3 x+2 y=5 \quad 2^{\text {nd }}$ equation
Substitute the values of x and y to the first equation
a) $(3,2)$

$$
\begin{aligned}
x+y & =1 \\
3 & +2=5
\end{aligned}
$$

Since it does not satisfy the first equation, no need to substitute the value of x to the second equation
b) $(2,3)$
$x+y=1$

$$
2+3=5
$$

Since it does not satisfy the first equation, no need to substitute to the second equation
c) $(3,-2)$
$x+y=1$
$3+(-2)=1$
Since it does satisfy the first equation, substitute to the second equation

$$
\begin{aligned}
& 3 x+2 y=5 \\
& 3(3)+2(-2)=5 \\
& 5=5
\end{aligned}
$$

No need to check letter d , the answer is C .

4. B

$$
\tan \theta<0 \text { and } \cos \theta<0
$$

Since $\tan \theta$ and $\cos \theta$ are both negative, the remaining possible quadrant where the θ lies is at quadrant 2 or when $\sin \theta$ is positive.

5. \mathbf{A}

x and y are integers
$\frac{x}{y}$ is negative
There are two cases:

1. x is positive and y is negative
2. x is negative and y is positive
I) $\quad x y$
if $x=+$ and $y=-$
$(+)(-)=-$

$$
\text { if } x=- \text { and } y=+
$$

$$
(-)(+)=-
$$

II) $x-y$

$$
\text { if } x=+ \text { and } y=-
$$

$$
(+)-(-)=+
$$

$$
\text { if } x=- \text { and } y=+
$$

$$
(-)-(+)=-
$$

III) $\quad x^{5}+y^{5}$

Use $\underline{S i m p l e}$ Example (SE)
If $x=-1$ and $y=1$

$$
x^{5}+y^{5}
$$

$$
(-1)^{5}+(1)^{5}=-1+1=0
$$

0 is neither positive nor negative. It is an arbitrary number.

6. D

x is between -5 and 7

use $\mathbf{S E}$

$\mathrm{x}=0,0$ is the best SE between -5 and 7
Substitute the value of x
a) $x=0$
b) $x+5=0+5$
c) $x^{2}+15=0^{2}+15=15$
d) $\mathrm{x}^{2}+30=0^{2}+30=30$
e) $3 \mathrm{x}+10=3(0)+10=10$
$\mathrm{x}^{2}+30$ has the greatest value
7. \mathbf{C}

Factor out $x^{2}+8 x-48=0$
$(x+12)(x-4)=0$
$(x+12)=0$ and $(x-4)=0$
The set of roots of $x^{2}+8 x-48=0$ is $\{-12,4\}$.
8. \mathbf{E}
$\left(4.8 \times 10^{-12}\right)\left(0.8 \times 10^{-20}\right)=\mathrm{N}$
$\left(3.84 \times 10^{-32}\right)=N$
9. D

equilateral: all sides are equal equiangular: all angles are equal The sum of the angles of a triangle is 180°.

10. C

Plot the points $(-1,5),(-1,1)$, and $(-3,5)$ on the cartesian plane as vertices of a triangle.

Line 3 and 8 are vertical angles.
12. D

a) $\angle \mathrm{A} \cong \angle \mathrm{E} \quad$ FALSE
b) $\angle \mathrm{C} \cong \angle \mathrm{F} \quad$ FALSE
c) $\mathrm{m} \angle \mathrm{D}+\mathrm{m} \angle \mathrm{E}=90^{\circ} \quad$ FALSE
d) $\mathrm{m} \angle \mathrm{B}+\angle \mathrm{E}=180^{\circ} \quad \mathrm{TRUE}$
$\angle \mathrm{B}$ and $\angle \mathrm{E}$ are supplementary angles
e) $\mathrm{m} \angle \mathrm{D}+\mathrm{m} \angle \mathrm{F}=180^{\circ} \quad$ FALSE

13. A

To get the number of posts needed, divide 114 m by 6 cm ,
$\frac{114}{6}=19$
Subtract 1 from 19 because $1^{\text {st }}$ post and last post are not connected.
19-1 = 18 posts
14. C
$495=100 \% \mathrm{P}+10 \% \mathrm{P}$
$495=\mathrm{P}+\frac{10}{100} \mathrm{P}$
$495=\frac{100}{100} P+\frac{10}{100} P$
$495=\frac{119}{100} \mathrm{P}$
$\frac{10}{11}\left[4955=\frac{x 1}{10} \mathrm{P}\right] \frac{\frac{10}{11}}{11}$
Get the 10% of 450
$450 \times 0.10=45$
$450-45=405$
The salesman should have sold the book at尹405.00.
15. A

$\angle \mathrm{B}=\frac{1}{2} \mathrm{~m} \widehat{\mathrm{AE}}$
$\angle B=\frac{1}{2}\left(14 \theta^{\circ}\right)$
$\angle B=70^{\circ}$

Since $A B=A C, \triangle A B C$ is an isosceles triangle. The bases of $\triangle A B C$ are also equal.

Since the sum of the angles of a triangle is 180°,
$\angle A=180-70-70=40^{\circ}$
$\widehat{\mathrm{BD}}=2 \times \mathrm{m} \angle \mathrm{A}$
$\widehat{\mathrm{BD}}=2 \times 40^{\circ}$
$\widehat{\mathrm{BD}}=80^{\circ}$
One complete rotation of a circle is 360°.
To get the measurement of $\widehat{A B}=360-m \widehat{A E}$ $\mathrm{m} \widehat{E D}-\mathrm{m} \widehat{\mathrm{BD}}=360-140-40-80=40^{\circ}$ $\widehat{\mathrm{AB}}=40^{\circ}$
16. A

$$
\angle x=120-74=46^{\circ}
$$

17. D

Since n is a positive number, the problem can be translated into this equation,

$$
\frac{(n)(n)}{n+\cdots+n}
$$

wherein $\mathrm{n}+\ldots+\mathrm{n}$ has n terms. We can simply rewrite it as

$$
\frac{n^{2}}{n(n)}=\frac{n^{2}}{n^{2}}=1
$$

18. A

The radius of the water is $1 / 4$ of that of the cone.

$\mathrm{r}=\frac{1}{-}(4)=1$
$\mathrm{~h}=?$
To get the height of the water, use Ratio and Proportion (RAP)
$\frac{4}{12}=\frac{1}{\mathrm{~h}}$
$\frac{4 \mathrm{~h}}{4}=\frac{12}{4}$
$\mathrm{h}=3$

The height of the water is 3 . Now use the formula to get the volume of a cone to get the volume of the water.
$r=1$
$h=3$

$$
\begin{aligned}
& \mathrm{V}_{\text {cone }}=\frac{\pi r^{2} \mathrm{~h}}{3} \\
& \mathrm{~V}_{\text {cone }}=\frac{\pi(1)^{2}(3)}{3} \\
& \mathrm{~V}=\pi \mathrm{cm}^{3}
\end{aligned}
$$

The volume of the water inside the cone is $\pi \mathrm{cm}^{3}$.
19. B

$$
\begin{aligned}
& \mathrm{A}_{\text {RectangleLOdI }}=12 \mathrm{~cm}^{2} \\
& \mathrm{lxw}=12 \mathrm{~cm}^{2}
\end{aligned}
$$

$1 \times 2=12$
$\frac{2 x}{2}=\frac{12}{2}$
$\mathrm{L}=6$
Create a right triangle

$$
\left.\begin{array}{ll}
x=\frac{2}{3} \\
h=2
\end{array}\right) h
$$

Using the concept of similar triangle by apply Ratio and Proportion (RAP)
$\frac{2}{3}=\frac{x+2}{4}$
$8=3 x+6$
$8-6=3 x$
$\frac{2}{3}=\frac{3 x}{3}$
$x=\frac{2}{3}$
To get the height,
$\mathrm{h}=\frac{2}{3}+2$
$\mathrm{h}=\frac{2+6}{3}=\frac{8}{3}$
$\mathrm{A}_{\text {ParallelogramLOKA }}=\mathrm{bxh}$
$A_{\text {ParallelogramLOKA }}=8 \times \frac{8}{3}$
$A_{\text {ParallelogramLOKA }}=16 \mathrm{~cm}^{2}$

20. B

$\mathrm{P}\left(\mathrm{twins}_{\text {GIRLS }}\right)=0.42$
$\mathrm{P}\left(\right.$ twins $\left._{\text {BOYs }}\right)=0.30$
The three possible cases are:

1) The twins are two boys.
2) The twins are two girls.
3) The twins are one girl and one boy.

The probability of having twins is 1 .
$\mathrm{P}(\mathrm{twins})=1$

To get the probability that there are one boy and one girl is,

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{twins}_{\text {EitherBoyOrGirl })}\right. \\
& \quad=\mathrm{P}(\text { twins })-\mathrm{P}\left(\mathrm{twins}_{\text {GIRLS }}\right) \\
& \quad-\mathrm{P}\left(\text { twins }_{\text {BoYS }}\right) \\
& \begin{aligned}
& \mathrm{P}\left(\text { twins }_{\text {EitherBoyOrGirl }}\right)=1-0.42-0.30 \\
&=0.28
\end{aligned}
\end{aligned}
$$

The probability that there are one boy and one girl is 0.28 .
21. D

P(1,1)
Q $(2, y)$
The slope of line PQ is d .
$\mathrm{m}=\mathrm{d}$
To get the value of y, use "two-point slope form"
$y_{2}-y_{1}=m\left(x-x_{1}\right)$
$P(1,1) P\left(x_{1}, y_{1}\right)$
$Q(2, y) Q\left(x_{2}, y_{2}\right)$
$\mathrm{y}-1=\mathrm{d}(2-1)$
$y=2 d-d+1$
$y=d+1$
The value of y is $\mathrm{d}+1$.
22. D

Use synthetic division especially when coefficients are involved.

-2 | 1 | 0 | r | 0 | -8 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | -2 | 4 | $-8-2 \mathrm{r}$ | $16+4 \mathrm{r}$ | $-16-8 \mathrm{r}$ |
| 1 | -2 | $4+\mathrm{r}$ | $-8-2 \mathrm{r}$ | $8+4 \mathrm{r}$ | $24-8 \mathrm{r}$ |
| $24-8 \mathrm{r}=0$ | | | | | |
| $\frac{-8 y}{-8}=\frac{-24}{-8}$ | | | | | |
| $\mathrm{r} \leq 3$ | | | | | |

The value of r is 3 .

23. B

Since we have a trapezoid where two sides are equal,

The sum of the angles of a trapezoid is 360°.
$360-60-60=360-120=240$
$\mathrm{m} \angle \mathrm{a}=\frac{1}{2}(240)$
$\mathrm{m} \angle \mathrm{a}=120^{\circ}$
$\frac{1}{2} \mathrm{~m} \angle \mathrm{a}=\frac{120}{2}=60^{\circ}$
The measure of half of $\angle \mathrm{a}$ is 60°.
24. C

Symmetry	Test of Symmetry
x -axis	$\mathrm{f}(-\mathrm{y})=\mathrm{f}(\mathrm{y})$
y -axis	$\mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})$
At the origin	$\mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x})$
Diagonal	$\mathrm{f}(\mathrm{x} \rightarrow \mathrm{y})=\mathrm{f}(\mathrm{y} \rightarrow \mathrm{x})$

Test of Symmetry
$y=f(x)=\frac{-2}{x^{3}}$
$f(-x)=\frac{-2}{(-x)^{3}}=\frac{-2}{-x^{3}}=\frac{2}{x^{3}}=-f(x)$
The function has symmetry at the origin.
25. E

$\angle \mathrm{OGI}=\mathrm{a}$
$\angle A G E=b$
$\angle z=90-a$
$\angle y=b-90$
$z-y=(90-a)-(b-90)$
$z-y=90-a-b+90$
$z-y=180-a-b$
26. D

To get the measurement of $\widehat{A C}$,
$\angle \mathrm{ADB}=\frac{1}{2}(\widehat{\mathrm{AB}}-\widehat{\mathrm{AC}})$
$2\left[20=\frac{1}{2}(160-\widehat{\mathrm{AC}})\right] 2$
$40=160-\widehat{A C}$
$\widehat{\mathrm{AC}}=160-40$
$\widehat{\mathrm{AC}}=120^{\circ}$
The measurement of $\widehat{\mathrm{AC}}$ is 120°.
27. A

$$
\begin{aligned}
& \text { Area }_{\text {square }}+\text { Area }_{\text {triangle }}=48 \mathrm{~m}^{2} \\
& \mathrm{~s}^{2}+\frac{b h}{2}=48 \mathrm{~m}^{2} \\
& (10-\mathrm{x})^{2}+\frac{(10-\mathrm{x})(\mathrm{x})}{2}=48 \\
& 2\left[100-20 x+x^{2}+\left(\frac{10 x-x^{2}}{2 / 2}\right)=48\right] 2 \\
& 200-40 \mathrm{x}+2 \mathrm{x}^{2}+10 \mathrm{x}-\mathrm{x}^{2}=96 \\
& 2 \mathrm{x}^{2}-\mathrm{x}^{2}-40 \mathrm{x}+10 \mathrm{x}+200-96=0 \\
& \mathrm{x}^{2}-30 \mathrm{x}+104=0 \\
& \begin{array}{l}
(\mathrm{x}-26)(\mathrm{x}-4)=0 \\
(\mathrm{x}-26)=0 \quad(\mathrm{x}-4)=0 \\
\mathrm{x}=26 \quad \mathrm{x}=4
\end{array}
\end{aligned}
$$

The value of x is 4 m . It is not possible to be 26 m because the total height of the figure is just 10 m .
28. A
$\mathrm{P}($ GIRL $)=\frac{9}{20}$
Let x be the number of girls
$\frac{9}{20}=\frac{\mathrm{x}}{120}$
$\frac{1080}{20}=\frac{20 x}{26} /$
$54=\mathrm{x}$
There are 54 girls.

Let N be the number of students from NAGA
Let M be the number of students from MAYON
$\frac{1}{3} N+\frac{1}{2} M=54$
$N+M=120$
$\mathrm{M}=120-\mathrm{N}$
$6\left[\frac{1}{3} N+\frac{1}{2}(120-N)=54\right] 6$
$2 \mathrm{~N}+3(120-\mathrm{N})=324$
$2 \mathrm{~N}+360-3 \mathrm{~N}=324$
$-\mathrm{N}=324-360$
$-\mathrm{N}=-36$
$N=36$
To get the probability that a student from NAGA will be randomly chosen:
$\mathrm{P}(\mathrm{NAGA})=\frac{\mathrm{N}}{120}=\frac{36}{120}=\frac{3}{10}=0.3$

The probability that a student from NAGA will be randomly chosen is 0.3 .
29. B

To get the radius of the water, use Ratio and Proportion (RAP)

$\frac{5}{12}=\frac{r}{9.6}$
$\frac{48}{12}=\frac{12 r}{12 /}$
$4=r$

To get the area of the circular surface of the water, use the formula to get the area of circle where $r=4$.
$\mathrm{A}_{\text {circle }}=\pi r^{2}$
$\mathrm{A}_{\text {circle }}=\pi(4)^{2}$
$A_{\text {circle }}=16 \pi$ in 2
The area of the circular surface of the water is $16 \pi \mathrm{in}^{2}$.
30. C

Extend $\overline{\mathrm{AB}}$

The measurement of $\angle A B C$ is 135°.

31. D

Take note that the given numbers are the first 100 odd numbers, it means that it is all odd numbers from 1-199 and these numbers form an arithmetic sequence. Thus, applying the formula:

$$
\begin{aligned}
& \text { sum }=\left(\frac{1 \text { st }+ \text { last }}{2}\right) n \\
& \text { sum }=\left(\frac{1+199}{2}\right) 100 \\
& \text { sum }=\left(\frac{1+199}{2}\right) 100 \\
& \text { sum }=(100) 100 \\
& \text { sum }=\mathbf{1 0 , 0 0 0}
\end{aligned}
$$

32. B

Let us just use the formula of an arithmetic sequence.
$A_{n}=A_{1}+(n-1) d$
$A_{7}=2+(7-1)\left(\frac{1}{2}\right)$
$A_{n}=2+6\left(\frac{1}{2}\right)$
$A_{n}=\mathbf{5}$
33. C

Let M be a male person
Let >20 be a person having an age greater than 20

$$
\begin{aligned}
& P(M \cup>20)= P(M)+P(>20)-P(M \cap \\
&>20) \\
&=\frac{3}{4}+\frac{3}{4}-\frac{3}{4}=\frac{3}{4}
\end{aligned}
$$

34. D

This is a permutation problem since order is important.

$$
\begin{gathered}
{ }_{8} P_{3}=\frac{8!}{(8-3)!}=\frac{8!}{5!}=\frac{8 x 7 x 6 x 5!}{5!}=8 x 7 x 6 \\
=336
\end{gathered}
$$

35. C

This is a permutation problem since we are talking about arrangements, thus order is important. Since there is a restriction, we need to be cautious in answering.

We will make A \& B as one entity since they are must be beside each other, same as D \& E, resulting to a scenario that arranges 3 objects only. The formula for that is

$$
3 \times 2 \times 1=6
$$

But we need to take account that the merged A \& B can change places so we will multiply the previous answer to 2 !. And since D \& E were considered to be one as well, we will multiply the new answer by 2 ! again.

Final solution is given by $(3 \times 2 \times 1) \times 2!\times 2!=$ $6 \times 2 \times 2=\mathbf{2 4}$.

36. D

We need to solve the values of x .
Let us express first the equation into a single trigonometric variable, we will use the identity $\sin ^{2} x+\cos ^{2} x=1$, manipulating this equation we can get $\cos ^{2} x=1-\sin ^{2} x$. Substituting,

$$
\begin{gathered}
2\left(1-\sin ^{2} x\right)-\sin x=1 \\
2-2 \sin ^{2} x-\sin x=1 \\
1-\sin x-2 \sin ^{2} x=0
\end{gathered}
$$

Let y be $\sin x$,

$$
\begin{gathered}
1-y-2 y^{2}=0 \\
(1-2 y)(1+y)=0 \\
(1-2 y)=0 ;(1+y)=0 \\
y=\frac{1}{2} ; y=-1
\end{gathered}
$$

Substituting back the value of y,

$$
\sin x=\frac{1}{2} ; \sin x=-1
$$

Since the values of x must come from the interval $[0.2 \pi)$, we need to find all values of x that will satisfy the sin equation in this interval only. When is $\sin x=\frac{1}{2}$, it is when $x=\frac{\pi}{6}, \frac{5 \pi}{6}$. When is $\sin x=-1$, it is when $x=\frac{3 \pi}{2}$. Based on the choices, we can say

that D is the only one that does not satisfy the given equation.

37. A

Simplify first the expression equal to $\mathrm{f}(\mathrm{x})$) before plugging in the expression of $\mathrm{g}(\mathrm{x})$

$$
f(x)=\frac{x-1}{x^{2}-1}=\frac{x-1}{(x-1)(x+1)}=\frac{1}{x+1}
$$

Thus,

$$
\begin{gathered}
f(g(x))=\frac{1}{g(x)+1}=\frac{1}{\frac{6 x-9}{2 x+1}+1} \\
=\frac{1}{\frac{1}{2 x-9}+\frac{2 x+1}{2 x+1}}=\frac{1}{\frac{6 x-9+2 x+1}{2 x+1}} \\
=\frac{1}{\frac{8 x-8}{2 x+1}} \\
=\frac{2 x+1}{8 x-\mathbf{8}}
\end{gathered}
$$

38. A

This figure is easier to solve if we make it to of it and combine to form a square since the triangle is an isosceles right triangle (half of a square).

Thus, we can say that the area inside the triangle but outside the semi-circle in the original figure is half the area of the difference of the square having a diagonal of $4 \sqrt{2}$ and a circle having a diameter of 4 (4 is
the side of the square having a diagonal of $4 \sqrt{2}$; it is a property of a square that the diagonal is $s \sqrt{2}$).

$$
\begin{gathered}
A=\frac{1}{2}\left(A_{\text {square }}-A_{\text {circle }}\right) \\
A=\frac{1}{2}\left(s^{2}-\pi r^{2}\right) \\
A=\frac{1}{2}\left(4^{2}-(\pi) 2^{2}\right) \\
A=\frac{1}{2}(16-4 \pi) \\
\boldsymbol{A}=\mathbf{8}-\mathbf{2 \pi}
\end{gathered}
$$

39. E

Let us look at $\triangle \mathrm{FCD}$ and $\triangle \mathrm{FGE}$ first since they are similar triangles. Using RAP, we can say that:

$$
\begin{gathered}
\frac{F C}{F G}=\frac{C D}{G E} \\
\frac{F C}{3}=\frac{8}{6} \\
F C=4
\end{gathered}
$$

Since we now know the measure of FC , we now find the measure of BD so that we can solve $B C$ by subtracting the measure of $C D$ from $B D$. We will use the $\triangle A B D$ and $\triangle F C D$ since they are similar triangles as well.

$$
\frac{B D}{C D}=\frac{A B}{F C}
$$

$$
\begin{aligned}
\frac{B D}{8} & =\frac{12}{4} \\
B D & =24
\end{aligned}
$$

Therefore, $\mathrm{BC}=\mathrm{BD}-\mathrm{CD}=24-8=\mathbf{1 6}$ units

40. E

If you are given an equilateral triangle circumscribed in a circle, there is a formula $r=\frac{s}{\sqrt{3}}$ wherein r is the radius of a circle and s is the side of the equilateral triangle.

Given R as the radius of the circle, we can say that $s=R \sqrt{3}$. Thus, the perimeter is

$$
P=3 s=3(R \sqrt{3})=3 \sqrt{3} R .
$$

41. B

2, 3, 5, 7
I. Non-repeating
$\underline{2} \times \underline{1} \times \underline{1}=2$
$\underline{7} \underline{3} \underline{5} \quad 735$ is divisible by 3 and 5
$\underline{3} 7 \underline{5} \quad 375$ is divisible by 3 and 5
II. Order is important; though answer is in I (2). To know if the number is divisible by 15 , it should be divisible by 3 and 5 .

The number is divisible by 5 if it ends with 0 or 5 while it is divisible by 3 if the sum of the digit is multiple of 3 .
42. D
die: $1,2,3,4,5,6$

$$
\begin{gathered}
\operatorname{Probability}(\text { die }>\text { coin })=\frac{\text { desired }}{\text { total }}=\frac{4}{12} \\
=\frac{\mathbf{1}}{\mathbf{3}}
\end{gathered}
$$

43. B
x and y are elements of integers (z)

$$
\begin{gathered}
\text { Given: } \mathrm{x}<8 \\
7<8
\end{gathered}
$$

7 is the largest value of x that is less than 8

$$
\begin{gathered}
\text { Given: } x-y>2 \\
7-y>2 \\
7-2>y \\
5>y \\
5>4
\end{gathered}
$$

4 is the largest value of y
(substitute $\mathrm{x}=7$ and $\mathrm{y}=4$)
Largest value of $x+y$ is $7+4=11$
44. A

$$
\begin{gathered}
\mathrm{ra}=\mathrm{sa}+\mathrm{t} \quad \mathrm{a}=? \\
\mathrm{ra}-\mathrm{sa}=\mathrm{t} \\
\mathrm{a}(\mathrm{r}-\mathrm{s})=\mathrm{t} \quad \text { factor out a } \\
\frac{a(r-s)}{(r-s)}=\frac{t}{r-s} \\
\mathrm{a}=\frac{t}{r-s}
\end{gathered}
$$

45. C
x-intercept $=$?

$$
y=\frac{-11 x}{3}+24
$$

$$
\begin{aligned}
& \text { Let } y=0 \\
& 0=\frac{-11 x}{3}+24 \\
& \frac{Z 3}{11}\left[\frac{11 x}{\not 2}=24\right] \frac{3}{11} \\
& \boldsymbol{x}=\frac{\mathbf{7 2}}{\mathbf{1 1}}
\end{aligned}
$$

46. D

$$
m=\frac{-1}{3}
$$

$$
\begin{gathered}
m=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)} \\
\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{-1}{3} \\
\frac{y_{2}-0}{x_{2}-0}=\frac{-1}{3} \\
\frac{y_{2}}{x_{2}}=\frac{-1}{3}=\frac{-2}{6} \\
x_{2}=6 \text { and } y_{2}=-2
\end{gathered}
$$

The point is ($6, \mathbf{- 2}$).
47. B

$$
\left(12 c^{4}-4 c^{3}+8 c\right) \div 4 c
$$

Use cancellation $\frac{12 \mathcal{C}^{4}}{4 c}-\frac{4 c^{3}}{A c}+\frac{\frac{8 c}{4 c}}{4 c} \mathbf{3} \mathbf{c}^{3}-\mathbf{c}^{2}+\mathbf{2}$
48. A
$\left(5 r^{2} s+4 r s^{2}-8 r s+15\right)$
$-r\left(3 r s+s^{2}-5 s\right)$
(distribute -r)

$$
5 r^{2} s+4 r s^{2}-8 r s+15
$$

$$
-3 r^{2} s-r s^{2}+5 r s
$$

$$
2 r^{2} s+3 r s^{2}-3 r s+15
$$

49. B

center $(\mathrm{h}, \mathrm{k}):(3,-2)$
radius: 2
Use the general form of a circle:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

$(x-3)^{2}+(y+2)^{2}=2^{2}$
$x^{2}-6 x+9+y^{2}+4 y+4=4$
$x^{2}-6 x+9+y^{2}+4 y=4-4($ transpose 4$)$
$x^{2}-6 x+9+y^{2}+4 y=0$
$x^{2}+y^{2}-6 x+4 y+9=0$ (rearrange the terms)
50. E

$$
\frac{\left(-3 x^{6} y^{5}\right)^{2}}{-3 x^{2} y^{2}}=
$$

Use cancellation $\frac{9 x^{12} y^{10}}{-3 x^{2} y^{2}}=-3 x^{10} y^{8}$
51. C

Total area $=9$
Area of the square $=4$
Area of the shaded region $=5$
total area - area of the square $=$ area of the shaded region

$$
9-4=5
$$

$$
A_{\Delta 1}+A_{\Delta 2}=5
$$

$$
\frac{b h}{2}+\frac{b h}{2}=5
$$

$$
\begin{gathered}
\frac{2(y-2)}{\not 2}+\frac{(x-2)(2)}{2}=5 \\
(y-2)+(x-2)=5
\end{gathered}
$$

$$
y+x=5+2+2
$$

$$
y+x=9 \text { or } x+y=9
$$

52. D

$$
\begin{gathered}
\cos ^{-1}\left(\frac{1}{2}\right) \text { where } \theta \in\left(0, \frac{\pi}{2}\right] \\
\cos \theta=\frac{1}{2} \\
\theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} \\
\theta=60^{\circ} \text { convert to pi radian } \\
\theta=60 \times \frac{\pi}{180}=\frac{\pi}{3}
\end{gathered}
$$

53. A

Using Ratio and Proportion (RAP)

Let ? be the cost of y mangoes

$$
\begin{gathered}
\frac{\operatorname{cost}}{\text { no. of mangoes }}=\frac{?}{y}=\frac{d}{x} \\
\frac{?}{y}=\frac{d}{x} \\
?=\frac{d y}{x}
\end{gathered}
$$

54. D

If $x>4$, look for the least value Using Simple Example (SE), $x=5$
a. $\frac{4}{x}=\frac{4}{5}$
b. $\frac{x}{4}=\frac{5}{4} \quad$ eliminated
c. $\frac{4}{x-2}=\frac{4}{5-2}=\frac{4}{3}$ eliminated
d. $\frac{4}{x+2}=\frac{4}{5+2}=\frac{4}{7}$
e. $\frac{x+2}{4}=\frac{5+2}{4}=\frac{7}{4}$ eliminated

Eliminate all the improper fractions because their values are always greater than 1.

$$
\text { Compare } \frac{4}{5} \text { and } \frac{4}{7}
$$

If the fractions have the same numerators, the greater the denominator, the lesser the value of the fraction. Therefore, $\frac{4}{7}$ is the least.

55. C

$72 x^{2}-9 x=0$
$9 x(8 x-1)=0$
$9 x=0$

$$
8 x-1=0
$$

$$
x=0
$$

$$
8 x=1
$$

$$
x=\frac{1}{8}
$$

The zeroes of $f(x)=72 x^{2}-9 x$ are $\mathbf{0}$ and $\frac{\mathbf{1}}{\mathbf{8}}$.

56. D

Using Elimination Method

$$
x=3 p+4 q \text { or } 4 q+3 p
$$

57. B

$$
\begin{aligned}
& A \cap B=C \\
& (A \cap C) \cup B=?
\end{aligned}
$$

$$
(A \cap C) \cup B=C \cup B=B
$$

58. E

Use Decarte's Rule of Sign
(k is negative)

Positive roots

(put a \checkmark if there is a change in sign and x if there's none)
zeroes of $f(x)=72 x^{2}-9 x$

To get the number of positive root(s), count the number of $\sqrt{ }$; then subtract 0 .

Number of positive roots: 2 or 0
Negative roots
$\mathrm{P}(-z)=-k(-z)^{5}-2(-z)^{4}+3(-z)^{3}+5(-z)^{2}-$
$3(-z)-8$
$=\underbrace{+k z^{5}}_{\sqrt{ }}-2 z^{4}-3 z^{3}+\underbrace{+} z^{2}+3 z-8$

To get the number of negative root(s), count the number of $\sqrt{ }$; then subtract 0 .

Number of negative roots: 3 or 1
59. D

$$
\begin{aligned}
& f(x)=7 x-5 \\
& g(x)=2 x+3 \\
& g[f(x)]=2(7 x-5)+3 \\
& g[f(x)]=14 x-10+3 \\
& g[f(x)]=\mathbf{1 4 x}-\mathbf{7}
\end{aligned}
$$

60. D

Using Pythagorean Triple $(5,12,13)$
($5 \times 100,12 \times 100,13 \times 100$)
$=(500 \mathrm{~m}, 1200 \mathrm{~m}, 1300 \mathrm{~m})$

