MOCK UPCAT 6: ANSWER KEY WITH SOLUTIONS

1. \mathbf{A}
$\frac{x}{z+1}=y$
$x=y z+y$
$x-y=y z$
$\frac{x-y}{y}=z$

2. D

Use a simple example. $\mathrm{k}=1$
a. $\mathrm{k}^{2}=1^{2}=1$; odd
b. $\mathrm{k}^{2}+2=1^{2}+2=3$; odd
c. $2 \mathrm{k}+1=2(1)+1=3$; odd
d. $2 \mathrm{k}+2=2(1)+2=4$; even
e. $2 \mathrm{k}+\mathrm{k} / 2=2(1)+(1 / 2)=2.5$; not odd nor even.

3. \mathbf{E}

The red triangle inside is equilateral triangle with side 2 units. The angles inside the equilateral triangle are equal to 60°. To get the height of the triangle (the green line), we use the 30-60-90 triangle relationship.
If the hypotenuse is 2 units, the side opposite to the 60°, which happens to be the height of the equilateral triangle, is equal to $\sqrt{3}$. The total height of the figure is $2+\sqrt{3}$.

4. \mathbf{E}

Let $\mathrm{w}=$ width, $\mathrm{l}=$ length, $\mathrm{P}=$ perimeter
$\mathrm{w}=-\frac{1}{2}-2$.
we know that $\mathrm{P}=2 \mathrm{w}+2 \mathrm{l}$
$40=2 \mathrm{w}+21$
$40=2(-2)+21$
$40=1-4+21$
$40=31-4$
$44=31$
$1=44 / 3$
5. E

Statement	Reason
$\begin{aligned} & \text { 1. } \mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{~B}+\mathrm{m} \angle \mathrm{Y} \\ & =180 \end{aligned}$	1. Triangle Angle Sum Theorem
$\begin{aligned} & \text { 2. } \mathrm{m} \angle \mathrm{Z}+\mathrm{m} \angle \mathrm{~B}+ \\ & +\mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{X}= \\ & 180 \end{aligned}$	2. Consecutive Angles of a Parallelogram
$\begin{aligned} & \text { 3. } \mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{~B}+ \\ & \mathrm{m} \angle \mathrm{Y}=\mathrm{m} \angle \mathrm{Z}+ \\ & \mathrm{m} \angle \mathrm{~B}+\mathrm{m} \angle \mathrm{~A}+ \\ & \mathrm{m} \angle \mathrm{X} \end{aligned}$	3. Transitive Property of Equality
4. $\mathrm{m} \angle \mathrm{Y}=\mathrm{m} \angle \mathrm{Z}+\mathrm{m} \angle \mathrm{X}$	4. Subtraction Property of Equality
5. $\mathrm{m} \angle \mathrm{Z}=-\mathrm{m} \angle \mathrm{X}+\mathrm{m} \angle \mathrm{Y}$	5. Subtraction Property of Equality

6. D

The area of the remaining portion of the circle is:
$A_{\text {new }}=A_{\text {old }}=\frac{3}{4} \times \pi 1^{2}=\frac{3 \pi}{4}$
The surface area of the cone without a base is $\pi \mathrm{rl}$ where 1
is the slant height of the cone, in this case, the old $\mathrm{r}=1$.
$\pi \mathrm{rl}=\pi \times \mathrm{rx1}=\frac{3 \pi}{4}$
$\mathrm{r}=3 / 4$

7. E

Fibonacci Sequence

Start with 1 and 1.
$3^{\text {rd }}$ number $=1^{\text {st }}+2^{\text {nd }}=1+1=2$
$4^{\text {th }}$ number $=2^{\text {nd }}+3^{\text {rd }}=1+2=3$
$5^{\text {th }}$ number $=3^{\text {rd }}+4^{\text {th }}=2+3=5$
$8^{\text {th }}$ number $=6^{\text {th }}+7^{\text {th }}=8+13=2$
8. E

The center of the circle lies on the x -axis, 4 units away from the origin. Thus, (4,0).

9. B

Let $\mathrm{w}=$ width, $\mathrm{l}=$ length, $\mathrm{P}=$ perimeter
$\mathrm{w}=\frac{1}{2}+2$
$1=w+3$
we know that $P=2 w+21$
Using the equation of w and P ,
$\mathrm{P}=2\left(\frac{1}{2}+2\right)+21$
$\mathrm{P}=1+4+31$
$\mathrm{P}=4+31$

10. C

For an implication statement of the form If P, then Q, only the form If not P, then not Q is true. This is called the contrapositive of the statement. Implications and their contrapositives are equivalent.
11. B

$$
\begin{gathered}
f(x)=\frac{4 x+8}{3-2 x} \\
f(x-1)=\frac{4(x-1)+8}{3-2(x-1)} \\
=\frac{4 x-4+8}{3-2 x+2}=\frac{4 x-4}{5-2 x}
\end{gathered}
$$

12. B

Let x be the number of hours they worked together.
Paolo's rate $=1 / 4$
John's rate $=1 / 2$

$$
\begin{gathered}
\frac{x}{4}+\frac{x}{2}=1 \\
x+2 x=4 \\
3 x=4 \\
x=\frac{4}{3}=1 \frac{1}{3} \text { hours }
\end{gathered}
$$

13. C

The form of the parabola $x=a(y-k)^{2}+h$ where (h, k) is the vertex (x, y) of the parabola. The parabola is opening to the left, so the coefficient a of y^{2} must be negative.

14. C

$2 x+y=-6$
$-6 x+4 y=18$
$6 x+3 y=-18$
$-6 x+4 y=18$
eliminate x
$7 y=0$
$y=0$
15. C

$$
\frac{x^{2}}{x+x+x}=\frac{x^{2}}{3 x}=\frac{x}{3}
$$

16. C
$6 x+9 y=7$
multiply by 2
$3 x-6 y=-14$ multiply by 3
$12 x+18 y=14$
$9 x-18 y=-42$
eliminate y
$21 \mathrm{x}=-28$
$x=-28 / 21=-4 / 3$
substituting x into the second equation
$3(-4 / 3)-6 y=-14$
$-4-6 y=-14$
$-6 y=-10$
$y=10 / 6=5 / 3$
The answer is $(-4 / 3,5 / 3)$.

17. B

$5 x^{2} y^{2}+3 x^{2} y-10 x y-36+(x y(16 x y-4 x+10))$
$=5 x^{2} y^{2}+3 x^{2} y-10 x y-36+16 x^{2} y^{2}-4 x^{2} y+10 x y$
$=21 x^{2} y^{2}-x^{2} y-36$

18. B

Let Jericho's age be x since it has no descriptions

	Now	+2 years
Joan's age	$\mathrm{x}+8$	$\mathrm{x}+8+2=\mathrm{x}+10$
Jericho's age	x	$\mathrm{x}+2$

$\mathrm{x}+10=2(\mathrm{x}+2)$
$\mathrm{x}+10=2 \mathrm{x}+4$
$\mathrm{x}=6$
19. C
$0.0001 \mathrm{y}=1$
$0.0001 \mathrm{y} \times 1000=1 \times 1000 ; 0.1 \mathrm{y}=1000$
0.0001 y x $10000=1 \times 10000 ; 1 \mathrm{y}=10000$
$1 y+0.1 y=10000+1000=11000$

20. C

$\frac{\mathrm{p}+\mathrm{q}}{\mathrm{p}-\mathrm{q}}=\frac{\frac{2}{3}+\frac{5}{7}}{\frac{2}{3}-\frac{5}{7}}=\frac{\frac{14+15}{21}}{\frac{14-15}{21}}=\frac{\frac{29}{21}}{-\frac{1}{21}}$
$=\frac{29}{21} \div-\frac{1}{21}=\frac{29}{21} x-\frac{21}{1}$
$=-29$

21. B

The volume of the prism is equal to $\mathrm{V}=\mathrm{Ah}$ where A is the area of the base. In this case, a prism with a square base has area $V=s^{2} h$.
$54=\mathrm{s}^{2} \times 6$
$\mathrm{s}^{2}=9$
$\mathrm{s}=3$

22. B

The area of the triangle is $\frac{\mathrm{r}^{2}}{2}$.
The area of the quarter circle is $\frac{\pi r^{2}}{4}$.
Subtracting the area of the triangle from the area of the quarter circle, we get

$$
\begin{aligned}
& \frac{\pi r^{2}}{4}-\frac{r^{2}}{2}=\frac{\frac{22}{7}\left(r^{2}\right)}{4}-\frac{r^{2}}{2} \\
= & \frac{22 r^{2}}{28}-\frac{14 r^{2}}{28}=\frac{8 r^{2}}{28}=\frac{2}{7} r^{2}
\end{aligned}
$$

23. B

Since the first point is at $(0,0)$, and the midpoint is at $(4,2)$, this means that half of the line segment is 4 units to the right and 2 units upward. Thus, we need to extend it by another 4 units to the right and 2 units upward, getting $(8,4)$.

24. B

Let h be the heights and s be the lengths of the shadow The ratio of height and length of the tree is equal to the ratio of the height and length of the stick.

$$
\begin{gathered}
\frac{\mathrm{h}}{\mathrm{~s}}=\frac{1 \mathrm{~m}}{3 \mathrm{~m}}=\frac{\mathrm{x}}{15.3 \mathrm{~m}} \\
\mathrm{x}=5.1 \mathrm{~m}
\end{gathered}
$$

25. B

$$
\begin{aligned}
& \text { Asquare }=\mathrm{s}^{2}=36 \mathrm{~cm}^{2} \\
& \mathrm{~s}=6 \mathrm{~cm} \\
& \text { Perimeter }_{\text {square }}=4 \mathrm{~s}=4(6)=24 \mathrm{~cm} \\
& \text { Perimeter } \\
& \text { square }
\end{aligned}=\text { Perimeter }{ }_{\text {triangle }}=24 \mathrm{~cm} \text {. }
$$

26. C

An angle bisector divides the angle into two equal lengths.

Since $\overline{\mathrm{BC}}$ is a bisector of $\angle \mathrm{ABD}$ and $\overline{\mathrm{AC}}=\overline{\mathrm{CD}}$, $\Delta \mathrm{ABC} \cong \triangle \mathrm{DBC}$

27. D

It can be seen that the length of the shaded triangle is 1 .
Thus, its height is equal to $\frac{\sqrt{3}}{2}$. Solving $\mathrm{bh} / 2, \frac{1 \mathrm{x} \frac{\sqrt{3}}{2}}{2}=\frac{\sqrt{3}}{4}$

28. B

Let r be the radius of the rear wheel and f be the radius of the front wheel. The relationship between the two radius is: $\mathrm{r}=2 \mathrm{f}$.
Getting the circumference of the rear wheel:

$$
C_{\text {rear }}=\pi d=\pi \times 2 r
$$

Substituting the relationship of the two wheels into the equation above,

$$
\pi d=\pi \times 2 r=\pi \times 2(2 f)=4 \pi f
$$

Thus,

$$
\begin{gathered}
\mathrm{C}_{\text {front }}=\pi \mathrm{d}=\pi \times 2 \mathrm{f}=2 \pi \mathrm{f} \\
\mathrm{C}_{\text {rear }}=2 \mathrm{C}_{\text {front }}
\end{gathered}
$$

29. A

Statement	Reason
$1 . \mathrm{m} \angle \mathrm{X}=\mathrm{m} \angle \mathrm{A}$	1. Alternate Exterior Angles
$2 . \mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}$	2. Alternate Interior Angle
$3 . \mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{Y}$	3. Vertical Angles
$4 . \mathrm{m} \angle \mathrm{X}=\mathrm{m} \angle \mathrm{Y}$	4. Transitive Property of Equality

30. D

Using ratio and proportion, we have to add all the partitions of the ratio. $3+4+5=12$. This corresponds to the total of the angles of the triangle, which is 180°. $180 / 12=15$. This is the multiplier of the ratio. To get the largest angle, we should multiply 15 by the biggest partition in the ratio. $15 \times 5=75$.

31. C

The hypotenuse of triangle ABC is equal to $2 \sqrt{2}$. If the ratio of the hypotenuse of triangle DEF to triangle ABC is $2: 2 \sqrt{2}$ which can be simplified to $1: \sqrt{2}=\sqrt{2}: 2$.
Since $B C=2$, the length of $E F$ is equal to $\sqrt{2}$.

32. A

Since the triangle is isosceles, $\mathrm{m} \angle \mathrm{A}=45$.
$\mathrm{m} \angle \mathrm{BAD}=45-15=30^{\circ}$. To get AB and $B C$,
$\mathrm{BD}=\mathrm{AD} \sin 30$
$4 \sqrt{3}=\mathrm{AD}\left(\frac{1}{2}\right)$
$\mathrm{AD}=8 \sqrt{3}$
To get AB and BC ,

$$
\mathrm{AB}=\mathrm{BC}=\mathrm{AD} \cos 30=8 \sqrt{3}\left(\frac{\sqrt{3}}{2}\right)=(4 \times 3)=12
$$

The area is equal to $(12 \times 12) / 2=72$ square units.
33. D

The area of the large square is 16 . That means, the side of the large square is equal to $\sqrt{16}=4$. The perimeter of each small square is equal to 4 . Thus, the side of each small square is $4 / 4=1$. The area of each small square is $1 \times 1=1$ square unit. 4 small squares $=4$ square units. $16-4=12$ square units.
34. D
$(-3 x-6)-(-4+-5)=18-(-9)=18+9=27$

35. E

Simplify all the values into decimal form.
a. 0.333
b. 0.600
c. 0.625
d. 0.626
e. 0.667

36. B

Working backwards: $5 \times 20=100$. The sum of the 5 integers is $100.3 \times 8=24$. The sum of the middle 3 integers is 24 . Thus, the sum of the first and last integer is $100-24=76$. Their average is $76 / 2=38$.

37. B

Let x be the number of girls
$x+2$ be the number of boys
$15=\mathrm{x}+(\mathrm{x}+2)+5=2 \mathrm{x}+7$
$8=2 x$
$\mathrm{x}=4$
There are 4 girls.

38. D

There was initially $1 / 2 \mathrm{~V}$ of water.
$1 / 6 \mathrm{~V}$ remained after 120 mL has been removed. Thus,
$1 / 2 \mathrm{~V}-1 / 6 \mathrm{~V}=120 \mathrm{~mL}$
$1 / 3 \mathrm{~V}=120 \mathrm{~mL}$
$\mathrm{V}=360 \mathrm{~mL}$.
39. A

Cars $=1 / 2(1000000)=500000$
Bus $=1 / 4(1000000)=250000$
Car + Bus $=750000=7.5 \times 10^{5}$

40. E

The common difference is $7 / 12$.
$4 / 3-3 / 4=16 / 12-9 / 12=7 / 12$
$3 / 4-1 / 6=9 / 12-2 / 12=7 / 12$
Thus, $1 / 6-7 / 12=2 / 12-7 / 12=-5 / 12$

41. D

$15,15,16,16,17,17,18,18,18,19,19$
18 occurs 3 times.

42. A

In 3 hours, there are 180 minutes $(3 \times 60=180)$. Therefore, in 3 three hours, there are $180 \times 2=360$ people who arrived. $365-360=5$ people initially in a party.
43. B
$0.6(4)=0.2+0.8+1.0+x$
$2.4=2.0+\mathrm{x}$
$\mathrm{x}=0.4$

44. E

Every second, M covers 5.5 m while J covers 4.5 m . That's a total of 10 m . Therefore, it will take 2 seconds for them to cover a total distance of 20 m . At that time, M will have covered 11 m .

45. C

Permutation. $\frac{\mathrm{n}(\mathrm{n}-1)}{2}=\frac{6(5)}{2}=15$

46. D

The area of the circle $9 \pi=\pi r^{2}$
Thus, the radius of each circle is 3 , and the diameter $=2 r=$ 6 . With two circles side by side, the length of the rectangle $=2 \mathrm{~d}=12$ and the width of the rectangle is $\mathrm{d}=6$.
The area of the whole rectangle is $12 \times 6=72$ square units. The area of the shaded region $=72-2(9 \pi)=72-18 \pi=$ $18(4-\pi)$.
47. C

The diagonal of the square $=$ radius of the quarter circle $=$ 6.

The area of the quarter circle $=\frac{\pi r^{2}}{4}=\frac{\pi \times 6^{2}}{4}=9 \pi$
The area of the square is $\mathrm{d}^{2} / 2=6^{2} / 2=18$.
Thus, the area of the shaded region is $9 \pi-18$.
48. A

The perimeter of the square is 16 . Thus, its side $=16 / 4=4$. Half its side is the side of the triangle. From the illustration, we can see that the triangle is $1 / 2$ of $1 / 4$ of the area of the whole square. Since its side is 4 , the area of the square $=s x$ $\mathrm{s}=4 \times 4=16.1 / 2 \times 1 / 4 \times 16=2$.
Or, since we know that half the side of the square is the side of the triangle, the area of the triangle is $\mathrm{bh} / 2=$ $(2 \times 2) / 2=2$

49. B

In a sequence, the $\mathrm{n}^{\text {th }}$ term can be computed as
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1}+\mathrm{d}(\mathrm{n}-1)$
The $9^{\text {th }}$ term, $\mathrm{a}_{9}=\mathrm{a}_{1}+8 \mathrm{~d}=9$
The $15^{\text {th }}$ term, $\mathrm{a}_{15}=\mathrm{a} 1+14 \mathrm{~d}=30$.
Treating the two equations as a system of equations with a 1 and d as the variables,
$\mathrm{a}_{1}+8 \mathrm{~d}=9 \quad$ multiply by -1
$\mathrm{a}_{1}+14 \mathrm{~d}=30$
$-a_{1}-8 d=-9$
$\mathrm{a}_{1}+14 \mathrm{~d}=30$
eliminating a_{1},
$6 \mathrm{~d}=21$
$\mathrm{d}=3.5$

Using a9 to get a_{1},
$9=\mathrm{a}_{1}+8(3.5)$
$\mathrm{a}_{1}=9-28$
$\mathrm{a}_{1}=-19$

50. C

Let R be the radius of the bigger circle, r be the radius of the smaller circle.
$\mathrm{R}=3 \mathrm{r}$
If the circumference of the smaller circle is $2 \pi r=6 \pi$, then the radius of the smaller circle is 3 . Thus, the radius of the bigger circle is $\mathrm{R}=3(3)=9$. Therefore, the circumference of the bigger circle is $2 \pi r=2 \pi(9)=18 \pi$.

51. B

The smaller square is half the area of the biggest square.

The smallest square is half the area of the smaller square.
If the area of the biggest square is 1 square unit, then $1 / 2$ of $1 / 2$ of $1=1 / 4$ square unit. $s^{2}=1 / 4 ; s=1 / 2$ unit.
52. C

The radius of the hollow portion is 2 units.
Thus, its volume $=\pi r^{2} h=\pi(4)(3)=12 \pi$.
The radius of the whole cylinder is 3 units.
Thus, the volume of the whole cylinder is
$=\pi \mathrm{r}^{2} \mathrm{~h}=\pi(9)(3)=27 \pi$.
Thus, the volume of the concrete portion is $27 \pi-12 \pi=15 \pi$.
53. B

Let x be Jaz's age.
Her grandmother is $60+x$.
Her mother is $3 \mathrm{x}-3$.
$102=x+(60+x)+(3 x-3)$
$102=5 x+57$
$5 \mathrm{x}=45$
$\mathrm{x}=9$
Thus, her mother is $3(9)-3=24$ years old.
54. C

The side of square is equal to the diameter of the circle. $s=40 / 4=10$. Thus, the circumference of the circle $=\pi \mathrm{d}=10 \pi$.

55. C

The width of the figure is equal to $2 \times$ radius of the circle $=$ $2 \times 3=6$.
The length of the figure is $2 \times$ diameter of the circles $-2=$ $2 \times 6-2=10$.
Thus, the area of the rectangle is $6 \times 10=60$.

56. B

Joe is Jen's husband.
57. C
$0.028-3 / 125=0.028-0.024=0.004=1 / 125$

58. E

Let x be the number of tables with 4 chairs and y be the number of tables with 6 chairs.
$x+y=20 \quad$ multiply by -6
$4 x+6 y=92$
eliminate y
$-6 x-6 y=-120$
$4 x+6 y=92$
$-2 \mathrm{x}=-28$
$\mathrm{x}=14$
59. E Since it is beyond 75%, it must be 80%.
60. B The 2007 graph is half the 2008 graph, thus, 2:1.

